Алгоритм разложения аналитической функции в степенной ряд


1. Найти производные от данной функции: .


2. Вычислить значения производных в точке ; записать коэффициенты по формуле (3.17). Составить ряд по степеням с этими коэффициентами, который соответствует данной функции


3. Найти область сходимости полученного ряда и записать разложение (3.15).

Если функция не имеет конечных особых точек, то ряд сходится к ней во всей плоскости, .

Утверждение 3.3


1. Функция, аналитическая в точке , раскладывается в окрестности этой точки в степенной ряд.


2. На границе круга сходимости ряда есть хотя бы одна особая точка функции, т.е. радиус сходимости круга равен расстоянию от центра разложения до ближайшей особой точки функции.


3. Степенной ряд в круге сходимости является рядом Тейлора для своей суммы, т.е. коэффициенты ряда вычисляются по формулам (3.16), (3.17).


7823796094522797.html
7823903739293988.html
    PR.RU™